
Programming with Robots

Albert W. Schueller
Whitman College

October 12, 2011



2

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
License. To view a copy of this license, visit http://creativecommons.org/licenses/

by-nc-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San
Francisco, California, 94105, USA. If you distribute this work or a derivative, include the
history of the document. This text was initially written by Albert Schueller and supported
by a grant from Whitman College, Walla Walla, WA USA.

Thanks to Patricia “Alex” Robinson for reading this over and helping me to keep it clean.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Chapter 1

Introduction

1.1 External References

Throughout these notes the reader is directed to external references. Unless otherwise spec-
ified, these external references were all created by the developers of the RobotC software at
Carnegie-Mellon’s Robotics Laboratory. The materials are distributed with the software and
are copyrighted and unedited. Because RobotC is still actively being developed, there are
cases in which the documentation does not match the RobotC behavior. The references are
stored locally to improve access to the materials and to ensure that they match the version
of the software that we are using.

1.2 Why Robots?

Why learn the basics of programming using robots instead of more traditional method? For
the last 50 years mainstream computer science has centered on the manipulation of abstract
digital information. Programming for devices that interact with the physical world has
always been an area of specialization for individuals that have already run the gauntlet of
abstract information-based computer science.

In recent years, we have seen a proliferation of processing devices that collect and manage
information from their real-time environments via some physical interface component–among
them, anti-lock brakes, Mars rovers, tele-surgery, artificial limbs, and even iPods. As these
devices become ubiquitous, a liberally educated person should have some familiarity with
the ways in which such devices work–their capabilities and limitations.

3



4 CHAPTER 1. INTRODUCTION



Chapter 2

Hardware and Software

Much of computer science lies at the interface between hardware and software. Hardware
is electronic equipment that is controlled by a set of abstract instructions called software.
Both categories have a variety of subcategories.

2.1 Hardware

Computer hardware is typically electronic equipment that responds in well-defined ways to
specific commands. Over the years, a collection of useful kinds of hardware has developed:

1. Central processing unit (CPU) - a specialized integrated circuit that accepts certain
electronic inputs and, through a series of logic circuits, produces measurable compu-
tational outputs.

2. Random access memory (RAM) - stores information in integrated circuits that
reset if power is lost. The CPU has fast access to this information and uses it for
“short-term” memory during computation.

3. Hard disk drive (HDD) - stores information on magnetized platters that spin rapidly.
Information is stored and retrieved by a collection of arms that swing back and forth
across the surfaces of the platters touching down periodically to read from or write
to the platters. These devices fall into the category of “secondary storage” because
the CPU does not have direct access to the information. Typically, information from
the HDD must be loaded into RAM before being processed by the CPU. Reading and
writing information from HDD’s is slower than RAM.

4. Other kinds of secondary storage - optical disks like CD’s or DVD’s where light
(lasers) are used to read information from disks; flash memory where information is
stored in integrated circuits that, unlike RAM, do not reset if power is lost; all of these
are slower than HDD’s or RAM.

5. Video card - is a specialized collection of CPU’s and RAM tailored for rendering
images to a video display.

5



6 CHAPTER 2. HARDWARE AND SOFTWARE

6. Motherboard - a collection of interconnected slots that integrates and facilitates the
passing of information between other standardized pieces of hardware. The channels
of communication between the CPU and the RAM lie in the motherboard. The rate
at which information can travel between different hardware elements is not only deter-
mined by the hardware elements themselves, but by the speed of the interconnections
provided by the motherboard.

7. Interfaces - include the equipment humans use to receive information from or pro-
vide information to a computing device. For example, we receive information through
the video display, printer, and the sound card. We provide information through the
keyboard, mouse, microphone, or touchscreen.

In robotics, some of these terms take on expanded meanings. The most
significant being the definition of interface. Robots are designed to interface
with some aspect of the physical world other than humans (motors, sensors).

2.2 Software

Software is a collection of abstract (intangible) information that represents instructions for
a particular collection of hardware to accomplish a specific task. Writing such instructions
relies on knowing the capabilities of the hardware, the specific commands necessary to elicit
those capabilities, and a method of delivering those commands to the hardware.

For example, we know that one of a HDD’s capabilities is to store information. If we
wish to write a set of instructions to store information, we must learn the specific commands
required to spin up the platters, locate an empty place to write the information to be stored,
move the read/write arms to the correct location, lower the arm to touch the platter etc.
Finally, we must convey our instructions to the HDD.

Generally, software instructions may be written at three different levels:

1. Machine language - not human readable and matches exactly what the CPU expects
in order to elicit a particular capability–think 0’s and 1’s.

2. Assembly language - human readable representations of CPU instructions. While
assembly language is human readable, its command set, like the CPU’s, is primitive.
Even the simplest instructions, like those required to multiply two numbers, can be
quite tedious to write.

Most modern CPU’s and/or motherboards have interpreters that translate assembly
language to machine language before feeding instructions to the CPU.

3. High-level language - human readable and usually has a much richer set of com-
mands available (though those commands necessarily can only be combinations of
assembly commands). Translating the high-level language to machine language is too
complicated for the CPU’s built in interpreter so a separate piece of software called a
compiler is required. A compiler translates the high-level instructions to assembly or
machine instructions which are then fed to the CPU for execution.

Examples of high-level languages are: C, C++, Fortran, or RobotC to name a few.



2.2. SOFTWARE 7

A robot is a programmable device that can both sense and change aspects of its envi-
ronment.



8 CHAPTER 2. HARDWARE AND SOFTWARE

2.3 Exercises

1. Who coined the term “robot”? Give a little history.

2. What are some more formal definitions of robot?

3. Who manufactures and what model is the CPU in a Mindstorm NXT robot?

4. Who manufactures and what model is the CPU in an iPod?

5. What is a bit? A byte? A kilobyte? A megabyte? A gigabyte?

6. What kind of hardware is a scanner?

7. What kind of hardware is an ethernet card (used for connecting to the Internet)?



Chapter 3

The Display

The NXT “brick” has a display that is 100 pixels wide and 64 pixels high. Unlike the latest
and greatest game consoles, the display is monochrome, meaning that a particular pixel is
either on or off. While simple, the display provides an invaluable tool for communicating
information from within a running program.

(0, 0) (99, 0)

(0, 63) (99, 63)

+xPos

+
y
P
o
s

pixel at (49, 31)

Figure 3.1: NXT display screen coordinate system.

3.1 Hello World!

An old tradition in computer science is the “Hello World!” program (HWP). The HWP is
a simple program whose primary purpose is to introduce the programmer to the details of
writing, saving, compiling, and running a program. It helps the programmer learn the ins

9



10 CHAPTER 3. THE DISPLAY

and outs of the system they will be using. Our HWP will print the words “Hello World!” to
the NXT display.� �
// Displays the words "Hello World!" on the NXT

// display for 5 seconds and exits.

task main() {

nxtDisplayString (4,"Hello World!");

wait1Msec (5000);

}� �
Listing 3.1: A simple “Hello World!” program for the NXT.

To execute these instructions on the NXT, run the RobotC program. Type the text
exactly as it appears in Listing 3.1 into the editor window. Save your program under the
name “HelloWorld”. Turn on the NXT brick and connect it to the USB port of the com-
puter. Under the Robot menu, choose Download Program. Behind the scenes, the HWP is
compiled and transferred to the NXT. Now, on the NXT, go to My Files → Software Files
→ HelloWorld → HelloWorld Run. If successful, the words “Hello World!” will appear on
the display.

3.2 Program Dissection

Nearly every character in the HWP has meaning. The arrangement of the characters is
important so that the compiler can translate the program into machine language. The rules
of arrangement are called the syntax. If the syntax rules are violated, the compilation and
download step will fail and the compiler will try to suggest ways to correct the mistake.

To start, we have task main(), signifying that this is the first section of instructions to
be executed. A program may have up to 10 tasks, but the main task always starts first. The
open and close curly braces ({, }) enclose a block of instructions. Blocks will be discussed
later in the context of program variables.

The first instruction is a call to the function nxtDisplayString(). Enclosed in the
parentheses are the arguments to the function. The first argument, 4, specifies the line on
which to place the words (there are 8 lines labeled 0 through 7 from top to bottom). The
second argument, "Hello World!", enclosed in double quotes, is the collection of characters,
also known as a string, to be displayed. The instruction is delimited by a semi-colon, ;.
The delimiter makes it easy for the compiler to determine where one instruction ends and
the next one begins. All instructions must end with a semi-colon.

The second instruction is a call to the wait1Msec() function. This causes the program to
pause by the number of milliseconds (1 millisecond = 1/1000th of a second) specified in its
argument before proceeding to the next instruction. In this case, the program pauses 5,000
milliseconds (or 5 seconds) before proceeding. If this pause is not included, the program will
exit as soon as the string is displayed and it will seem as if the program does nothing at all.

The two lines at the top of Listing 3.1 are comments and are ignored by the compiler.
Comments are useful in large programs to remind us what is going on in a program or in a



3.3. BEYOND WORDS 11

particular section of the program. The characters // cause any characters that follow to the
end of the line to be ignored by the compiler. Additional information about comments in
RobotC is available here1.

3.3 Beyond Words

There are a number of other objects, other than strings, that can easily be rendered on the
display–ellipses, rectangles, lines, and circles. A summary of all of the display commands is
available in the RobotC On-line Support on the left side-bar under the NXT Functions →
Display section.

An important step in learning to use these commands is to understand the display’s
coordinate system. As mentioned earlier, the screen is 100 pixels wide and 64 pixels high.
Each pixel has a unique position given by the ordered pair (xPos,yPos). The origin is located
at the lower-left corner of the screen and has coordinates (0,0). The xPos coordinate moves
the location left and right and ranges from 0 to 99. The yPos coordinate moves the location
up and down and ranges from 0 to 63. Coordinates that are outside of this range are still
recognized, but only the pieces of a particular object that land inside the display range will
be visible.

The program in Listing 3.2 draws a filled ellipse. After a second, it clears out a rectangle
from within the ellipse and displays the string "Boo!". After another second, the program
exits.� �
// A more advanced display program.

task main() {

nxtFillEllipse (0,63,99 ,0);

wait1Msec (1000);

nxtDisplayBigStringAt (29,41,"Boo!");

wait1Msec (1000);

}� �
Listing 3.2: A (slightly) more advanced demonstration of the display instructions.

1http://carrot.whitman.edu/Robots/PDF/Comments.pdf

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm
http://carrot.whitman.edu/Robots/PDF/Comments.pdf


12 CHAPTER 3. THE DISPLAY

3.4 Exercises

1. What are the coordinates of the corners of the display? What are the coordinates of
the center of the display?

2. What command will render a diagonal line across the display going from the upper-left
corner to the lower-right corner?

3. What would the arguments to the nxtDrawEllipse() function look like if you were to
use it to render a circle of radius 5 centered at pixel (15,30)?

4. What is the largest ellipse that can be rendered in the display (give the command to
render it)?

5. Write a program that draws the largest possible rectangle on the display and, moving
inward two pixels, draws a second rectangle inside.

6. Write a program that displays the 5 Olympic rings centered in the screen. This may
require some scratch paper and some hand sketching to figure out the correct positions
of the circles. (Diagram #2 on this page is useful.)

7. Write a program that displays the string "Hello World”! on line 0 for 1 second, line
1 for 1 second, etc, up to line 7.

8. Write a program that will display a figure similar to

on the NXT display screen. (Hint: Use the nxtDrawLine() function a few times.)

9. By including pauses between the rendering of each line, a kind of animation can be
achieved. With carefully placed wait1Msec() function calls, animate the process of
drawing the figure in Exercise 8 line by line.

10. Animate a bouncing ball on the NXT display. This may require a lot of nxtDrawCircle()
function calls (and a lot of copy and paste). It will also require the use of the
eraseDisplay() function.

11. Animate a pulsating circle. This will require the eraseDisplay() function.

http://upload.wikimedia.org/wikipedia/commons/a/a7/Olympic_flag.svg


3.4. EXERCISES 13

12. Create an interesting display of your own.

13. Create an interesting animation of your own.



14 CHAPTER 3. THE DISPLAY



Chapter 4

Sensors and Functions

Like the display, sensors provide another kind of interface with the robot. Each of these
supply information to the robot about the environment. There are four sensors available.

1. sound – measures the amplitude of sound received by its microphone.

2. light – measures the brightness of light.

3. sonar – measures the distance from the sensor to a nearby object.

4. touch – measures whether its button is depressed or not.

The first two give integer values between 0 and 100 to represent the measured quantity.
The third gives integer values for distance, in centimeters, from the target (up to around a
meter). The last is a Boolean value that is true if depressed and false otherwise.

4.1 Variables

The value of a sensor changes over time. Because of this, the programmer can never be sure
what the value of a sensor will be when the user decides to run their program–it depends
on the circumstances. An indeterminate is a quantity in a program whose value is not
known to the programmer at the time they write the program. To handle indeterminacy,
programming languages provide the ability to use variables. Variables act as place holders
in the program for the indeterminate quantity.

For example, suppose the programmer wants to display the light sensor value on the
display. Unlike earlier examples where we displayed specific shapes and strings, the value
of the light sensor is not known in advance. To get around this problem, the programmer
defines a variable in their program to hold the light sensor value, writes an instruction to
store the current light sensor value in that variable, and prints the contents of the variable
to the display. The variable plays the role of the light sensor value.

To define a variable, the programmer must give it a name and know what kind of in-
formation is to be stored in the variable. The name is the string the programmer types in
order to refer to the variable in a program. Names must respect the following rules:

15



16 CHAPTER 4. SENSORS AND FUNCTIONS

Type Description Syntax Examples

integer positive and negative
whole numbers (and
zero)

int 3, 0, or -1

float decimal values float 3.14, 2, or -0.33
character a single character char v, H, or 2

string an ordered collection
of characters

string Georgia, house, or a

boolean a value that is either
true or false

bool true, false

Table 4.1: The five basic datatypes.

1. no spaces.

2. no special symbols.

3. cannot start with a digit character.

4. cannot be the same as another command, e.g. nxtDrawCircle.

Furthermore, names are case-sensitive, e.g. the variable names apple and Apple represent
different variables.

The kind of information stored in a variable is the datatype of the variable. There are
5 basic datatypes available as summarized in Table 4.1.

To inform the compiler about a variable, the programmer must declare it. A variable
declaration has the general form:

[type] [variable name];

A variable must be declared before it is used in a program. Because of this, it is traditional
to place all variable declarations near the top of the program block (the instructions enclosed
by matching {}’s) where the variable is first used.

The scope of a variable refers to those places in a program where the variable name
is recognized. In RobotC, like ordinary C, the scope of a variable is the section after the
declaration statement of the inner-most program block containing the variable declaration.
The scope extends into any sub-blocks of the block, but defers to any variables of the same
name that may be declared in the sub-block, see Listing 4.1. When the program reaches the
end of a block of instructions, all of the variables declared inside that block pass out of
scope. The information in those variables is lost and the computer memory used by those
variables is freed.



4.1. VARIABLES 17

� �
task main() {

// inner -most block

// containing declaration

int n1;

n1 = 10;

// from here to the end of this block ,

// n1 has the value 10

{ // sub -block

// in this sub -block , n1 has

// the value 10.

}

{ // sub -block

int n1;

n1 = -2;

// from here to the end of this block ,

// n1 has the value -2

// at the end of this block , the second

// declaration of n1 passes "out of scope"

}

// references to n1 in this part of

// the block use the first declaration

}� �
Listing 4.1: Variable scoping rules.



Thank You for previewing this eBook 
You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 
 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 
access up to 5 PDF/TXT eBooks per month each month) 
 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

